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An attempt is made to take into account the irregular structure of the surface of a real crack in describing 

the fracture process. The crack surface is modelled using a fractal set of fractional dimension. Using the 

self-similarity of the fractal, a hierarchical process of the transfer of elastic energy generated during the 

motion of the crack tip from one scale to another is suggested. Analysis of this process makes it possible to 

obtain asymptotic expressions for describing the behaviour of the cracks and displacements near the crack 

tip. It is shown that the fractal geometry of the crack leads to a change in the singular behaviour of the stress 

fields at the crack tip, and to the appearance of an anomalous dimensionally dependent factor in the 

expression for the stress intensity factor. Similar results are also obtained for branching fractal cracks. The 

propagation of a fractal crack in a brittle material is analysed from the positions of the Griffith’s criterion. 

THE surface of the fracture or crack formed as a result of the failure of most real materials is very 
irregular and is characterized by the presence of irregularities (peaks, hollows, serrations, etc.) of 
various different sizes. Therefore, a real crack hardly resembles, within the intermediate scale, ideal 
cracks with their smooth surfaces, which are usually considered in the theory of fracture. It is clear 
that the complex structure of the fracture surface which makes a significant contribution to the 
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process of crack propagation, should be taken into account when describing the process. During the 
last few years an important feature of the structure of the crack surface was discovered, namely, the 
statistical self-similarity of the fracture surface microrelief was established [ 1, 21. 

Taking into account the self-similarity of the crack surface microrelief in modelling its structure 
leads naturally to the use of fractal surfaces. Models of cracks based on fractal sets were given in 
[2-6], where experimental methods of determining the fractal dimension of the cracks were also 
discussed. 

When using fractal surfaces (or fractal curves in the plane case) for modelling the cracks, one 
must remember that from the mathematical point of view the fractal is infinitely tortuous, and the 
fractal surface (line) has infinite area (length). The tortuousness of the real crack (as well as its area) 
is naturally finite, and hence a natural lower limit 6 of applicability of the fractal model exists. the 
scale of S is usually related to the microstructure of the medium. For metals it can be the grain or the 
subgrain size, for example. 

It is also obvious that the applicability of the fractal model must also have an upper limit L. This 
scale can be related to the geometrical dimensions of the body, to the size of the crack, to the 
characteristic scale of inhomogeneity of external fields, etc. Thus the fractal model can be used for 
the intermediate scales Z satisfying the condition S G I< L (we shall leave aside for the time being the 
problem of the possible multifractal structure of the crack). 

The causes and laws of formation of the fractal geometry in the process of fracture have, so far, 
been insufficiently studied, although there are publications in which models leading to the fractal 
structure of crack surfaces or of foci of multiple fracture are proposed [G--10]. These problems are 
not discussed below, and our attention is concentrated on the consequences of the fractal character 
of the crack surface. It must, however, be remembered that the structure of the fracture surface, its 
geometrical characteristics and in particular, the fractal dimension D, depend greatly on the 
mechanism of the fracture process. This is of particular value in interpreting the experimental 
results, since unlike the many parameters encountered in mechanics of fracture. the fractal 
dimension of the fracture (crack) D depends not only, and not so much, on the type of material, as 
on the nature of the fracture process. 

1. We shall restrict ourselves to the case of brittle fracture, and first consider the development of 
cracks in two-dimensional geometry (plane problems). The growth of a crack in a rigid body has, to 
a considerable extent, a stochastic character and can therefore be modelled by a stochastic fractal. 
Therefore, the quantities obtained by averaging over the realizations are of the greatest interest in 
describing the fracture process. Such characteristic quantities are, for example, the asymptotic 
forms of the displacement and stress fields near the crack tip and the form of functional dependence 
of the stress intensity factor on the geometrical dimensions of the crack. 

If we confine ourselves to the “averaged” characteristics, we can use, as the model of a crack 
chosen for the analysis, any “typical” realization of the stochastic fractal. Let us consider, as such a 
realization, a regular geometrical fractal with the corresponding characteristics (dimension, 
connectedness, etc.). 

Thus we shall assume that a crack propagates through the body in question under the action of 
applied forces, the crack representing a regular geometrical fractal of dimension D (with its proper 
topological dimension d = 1). Figure 1 shows as an example, a fractal crack whose form is that of the 
classical fractal curve Kox (D = In 411n 3). 

It is clear that the fractal dimension D falls far short of characterizing the geometry of the crack 
completely. We shall therefore assume, in addition, that the fractal crack has the form of a twisting 
line (without branching) distributed “on the average” along the X axis, with the forces applied in 
the direction of the Y axis. Therefore the fracture takes place, on the macroscale, “on the average” 
according to type 1 (normal tension crack) and is governed by the stress intensity macrofactor KI. It 
is in this sense, of averaging over the possible realizations of the crack trajectory, that the results 
obtained should be understood. 

In the case of a crack with smooth surfaces it is assumed that, when the tip of the crack moves a 
certain distance Al, the elastic energy released by this motion is dumped into the crack tip where it 
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FIG. 1. 

dissipates in forming a new crack surface. For a fractal crack the process of elastic energy dissipation 
is more complicated and interesting, since the fractal has a multiscale hierarchical structure. 

Taking into account the hierarchical construction of the fractal crack, we shall assume that the 
process of fracture (the motion of the crack tip) is accompanied by a cascade transfer of the released 
elastic energy from the larger scales to the smaller ones, and finally to the microscale where the 
energy is dissipated and used to form a new surface of discontinuity. We shall assume for the time 
being that the cascade process occurs with conservation of energy. 

Let us describe the process of energy transfer in more detail. First we shall consider the 
development of the crack on the macroscale 1% 6, which is nevertheless small compared with the 
macrodimensions L (1 G L). 

When the crack tip moves, on the macroscale I by a distance Al, the amount of elastic energy 
released is 

AU=G,Al (1.1) 

The specific density of released enery Cc = AU/Al as AI+O, can be represented in the form of a 
r-integral over the contour y, representing a circle with centre at the crack tip [ll-141 

Go =J’(h’nr - m,jn/Ui,r)dS (i,i= 1,2) (1.2) 
I 

Here W is the work done by the stresses on the corresponding deformations (per unit volume), ni 
is the outer unit normal to the contour y, and cry and Ui denote the stresses and displacements, 
respectively. 

Since on the macroscale the crack is modelled, on average, by a crack-cut of normal tension, it 
follows that the elastic field near its ends is characterized by the average stress intensity factor KI 
and by the usual asymptotic dependence on the distance r from the corresponding tip of the crack, 
when the displacements are -T 1’2 and stresses are -rmu2. 
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Let us assume that the following, more general asymptotic relations hold near the tip of the fractal 
crack: 

Uf m K1r’ -%,00, ofi 5 &r-afil(6 (1.3) 

where KI is the stress intensity factor, and r is the distance from the tip of the crack. Of course, Eqs 
(1.3) are assumed to be valid only within the fractal region 6e re L. We shall assume that the power 
index (r is, at present, unknown. In the fractal case the index (Y must depend on the dimensions of 
the crack. 

Substituting relations (1.3) into (1.2) we obtain 

CO 
+7-‘Kp’-29 (1.4) 

We will now calculate the magnitude of the released elastic energy, by considering the crack on 
the nth microscale 1, = Up” where p is the scale parameter determining the variation in the size of 
the crack fragments during scaling. 

We shall assume that by averaging the crack can also be modelled on the nth microscale using the 
set of elements of the normal tension cracks. If the crack tip moves, on a macroscale of I, by AI, on 
the scale I,,, every fragment of the crack will increase by an amount Al, = Al/p”. Let B, be the 
number of elements of the crack of scale f,, , in which case we can replace relations (1.1) by 

AU = B,, G, Al,, 

where G, is the density of the elastic energy released on the nth microscale I,,. 
Consequently, the cascade process of elastic energy transfer can be described by the following 

sequences of relations: 

AlJ=G,Af=B,G,Al,=...=B,G,Al,=... 

where we have taken into account the fact that the energy released during the passage from the scale 
1 n+l to the scale 1, is conserved. The energy conservation law has the obvious form 

B,G,&, =&+iG,+,A&,+i (1.5) 

Let us now assume that G, = G (In). Then the energy conservation law (1.5) will enable us to 
obtain the following renormed group equation: 

B Ah+, 
G(I,) = F LsI G ( + 1,) 

n n n 

or 

1 &+, 
G(I,) = - - 

P Bn 
G+- 

P ) 

(1.6) 

(1.7) 

Seeking the solution of equation (1.7) in the form 

GU,) ~ 1,X (1.8) 

and making no distinction between the fractal dimension D and self-similarity dimension D, [l], we 
obtain 

x=D-1 (1.9) 

In the case of a crack in the form of the curve Kox (see Fig. 1) it is clear that p = 3, B,+lIB, = 4 

and therefore the renormed group equation has the form 

G(M = 4/j G( ‘/s 1,) 

It can be shown that in this case 

G(I,) -!t-‘, D= In 4/ln 3 

Taking into account the relations (1.8) and (1.9), we have 
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Go =G(l) -ID-’ (1.10) 

and equating (1.4) and (1.10) we obtain 

cu=(2 -D)/2 (1.11) 

It follows from this that the fractal geometry of a crack introduces considerable changes to the 
asymptotic form of elastic fields near its tip. 

For a non-fractal crack when D = 1 we obtain, as expected, (Y = 1/2. If we model the crack 
trajectory using the random Brownian process (D = 1.5), then (Y = 0.25. 

An interesting result is obtained for a fractal crack (more accurately, for a fractal cut) generated 
by a fractal with a generator shown in Fig. 2(a). It can be confirmed that such a fractal has dimension 
D = 2 and fills the square of mappings shown in Fig. 2(b), densely everywhere. It follows that at the 
corner A we have a sort of angular notch, but the stresses at this point are singular (o = 0). The 
latter is connected with the fact that the material inside the square, although it is “completely 
disrupted”, is not completely load-free, and this is found to be sufficient for the “suppression” of the 
singularity at the corner point A. 

Similar results are obtained in the case when the crack trajectory on the mesoscale appears to be 
completely chaotic and can be modelled with the help of a white noise-type random process. As we 
know, in this case D = 2, the stresses near such a crack will be non-singular, and the displacements 
Au-r. 

1 lb) 
e 

I 
FIG. 2. 
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Using relations (1.3), (1.11) we obtain the following asymptotic formula for the opening at the tip 

of the fractal crack: 

Au ,rD12 

2. Using asymptotic relation (1.3), condition (1.11) and dimensional considerations, we can 
conclude that the following relation exists between the stress intensity factor KI and the geometrical 
size of the crack, for a fractal crack: 

KI -al”, a= I -D/2 (2.1) 

The above result can be obtained in a simpler manner based on a Griffith analysis of brittle 
fracture. 

Following Griffith’s criterion we shall assume that, in the equilibrium case, an increase in the size 
of the crack by AZ, the magnitude of the elastic energy released AU, is compensated by an increase in 
the surface energy AU, along the cut formed, i.e. 

It is clear that 

AU, = AU, (2.2) 

AU, - 1/2 E-‘u =lAl, AU, = yAs 

where E is the modulus of elasticity, y is the coefficient of surface energy, and As is the increment in 
the crack length. 

In the fractal case the “true” length of the crack s is connected with its geometric size 1 by the 
scaling relations s - (Z/E)~.E, where E is the measuring scale. Therefore we have 

As - (l/~)~-‘Al (2.3) 

consequently, in the equilibrium case we obtain, from (2.2) and (2.3), 

“21(1/&-D -Ey (2.4) 

Using the definition of the stress intensity factor, we again obtain for the fractal crack a relation of 
the type (2.1). 

Writing KF- uti, we obtain from (2.4) the stress intensity factor for the usual one-dimensional 
cut of size 1, apart from a multiplicative constant of the order of unity 

Kf - K;(~/E)(‘-~)~* (2.5) 

Thus, when we take into account the fractal geometry of the crack surface, we obtain, in the 
expression for the stress intensity factor, an unusual scale factor described by the formula (2.5). 
When D increases (roughly speaking, when the tortuousness of the crack increases), the stress 
intensity factor decreases and In K{ will depend linearly on D - 1. The latter agrees well with 
experimental results [4]. 

We note that when D = 2, the stress field is non-singular in the neighbourhood of the defect, and 
that implies that the asymptotic forms of the field aii change appreciably, namely the singular terms 
responsible for the appearance of stress intensity factors vanish from them. In other words, the 
fractal crack of dimension 2 resembles “on average”, a cavity or cavern, and the stress field in the 
neighbourhood of the defect will be described with help of the “usual” stress concentration factor. 

We will transfer the results obtained to the case of cracks in solids. It should merely be remembered that in 
the three-dimensional case we can consider various different models of cracks with fractal geometry. For 
example, we can imagine an approximately disc-like crack in the plane, of size R, whose surfaces will be fractals 
of dimension 2 s D s 3. Using Griffith’s criterion we can find that in this case 

KI _ 0R(3-D)i2 

Another fractal model is obtained if we assume the crack surfaces to be smooth, and the crack front to be a 
fractal curve of dimension 1 SD < 2. For such a model we have 

KI _ OR(*--D)l* 
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Relations (2.4) (2.5) are used in formulating the force criterion of the limit equilibrium of the fractal crack. 
We shall write it in the form 

Kf = Kf 
I Ic (2.6) 

where KS:, is the critical value of the stress intensity factor characterizing the resistance of the material to the 
growth of a crack of scale 1. Using (2.4) and (2.5) we shall assume that 

KI’, = f;IC[(“-t)12 
(2.7) 

Here K,, is the resistance of the material to cracks on the macroscale. 
We note that in the theory of cracks the quantity KI, is usually assumed to be a material constant 

independent of the crack length. Experiments on samples with macrocracks confirm, for a number of materials 
(especially for brittle and quasi-brittle materials) the validity of this assertion, At the same time, the presence 
of structural scales in the materials leads to the fact that the magnitude of KI, may be found to be different for 
cracks of different scales. The dimension of rC,,, however, is preserved ([KIJ = [F]=[L]-3n). For a fractal 
crack the picture is different. When D changes, the parameter KJC changes not only its numerical value, but 
also the dimension. This implies that the fractal crack resistance of the material is characterized not by a 
number, but by relation (2.7). 

We shall explain how changing over to the usual description of the macrocrack resistance with parameter Klc 
can occur in accordance with (2.7). Since D IS 1, the fractal crack can propagate in a stable manner as its length 
and the stress intensity factor increase (naturalIy, within a specified range). It should be remembered that 
relation (2.7) holds only on the mesoscale determined by the domain of applicability of the fractal model. 
When changing from one scale to another (and especially from the mesoscale to the macroscale of the 
experiments), we must take into account the fact that the fracture mechanisms may also have a characteristic 
scale of applicability. 

The fractal dimension D of the crack depends very much on the mechanism of the fracture. Therefore we 
must take into account, when changing from one scale to another, the change in dimension D. In other words, 
we should regard the fracture as a multilevel, multi~actal process. The dimension of the fractured structure (in 
our case, of the crack) will depend on the scale D = D(1). Since the fractal crack appears on the macroscale L 
simply as a one-dimensional cut, it is natural to assume that D(L) = 1. 

This, in particular, means that on the macroscale which is usually accessible in the experiments, relation (2.6) 
becomes saturated and reaches some asymptotic form KIc M defining the macrocrack stability of the material. It 
can be expected that the representations concerning the fractal crack resistance will be found to be useful, 
especially when analysing short cracks whose controlling laws could not be arrived at from the usual 
representations of the theory of cracks, in terms of the parameter Z&. This problem, as well as criteria1 
relations (2.6), (2.7), both need a special experimental study. 

The results given above were obtained under the assumption that the energy is conserved in the cascade 
process. This restriction may be found to be too stringent even in the case of ideally brittle fracture since, as we 
know, part of the energy is dissipated as a result of dynamic effects at the microlevel. Even more so, when the 
fracture is not ideally brittle, the energy will be dissipated during the passage from one structural level to 
another. 

The energy dissipation processes during the passage from one structural level to another can easily be taken 
into account by retaining the assumption on self-modelling (self-similarity) of the transfer process. We shall 
assume that during the passage from the scale ln+l to the scale /, , only a qth part of the energy is transferred, 
and a (1 - q)th part of the energy is lost, consumed in various dissipative processes accompanying the crack 
growth. Then the energy conservation law will have to be rewritten, in the cascade process (1.6), as follows: 

&&~~ = &+t%+t”Sl,,trr q<l (2.8) 

Repeating practically verbatim the above arguments which led to the solution (1.8), we find the energy 
conservation law in the form (2.7), that 

G(f,) _ I@- I+@ n ’ l9=-lnqllnp>O 

which means that (Y = M(2 - D - /3) and the index p precisely, takes into account the influence of the dissipative 
processes. 

3. Apart from the fractal cracks representing a twisting fractal line, we also have a numerous and 
important class of cracks which can be successfully described using the methods of fractal geometry. 
We refer here to branching cracks. 



570 R. V. GOL’DSHTEIN and A. B. MOSOLOV 
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FIG. 3. 

Following the arguments and methods used in Sec. 2 for the “twisting” crack, we can also obtain a 
renormed group equation for the density of the released energy in the case of a self-similar (fractal) 
branching crack. We shall consider, as an example, the model crack shown in Fig. 3. 

In this case equations similar to (l.l)-(1 S) lead to the energy conservation law in the form 

B&n&, =&+iG,+r&+r, 

where G, is the energy released during the motion of the cracks at the nth level. 
The corresponding renormed group equation for G, = G(I,) can be written in the form 

G&!+!+(+~) (3.1) 
n n n 

In the case in question (Fig. 3) we have 

c(l,) = ?‘zG(% - M 

For a fractal branching crack, the neighbourhood of the tip of any crack of scale I,, has exactly the 
same appearance as the neighbourhood of the tip A of the whole crack of the scale 1. Therefore, if 
we assume that G(I) -11-2a, then also G(I,) -lA-*“. Substituting such an expression for G into 
renormed group equation (3.1), we obtain for (Y, as previously, expression LY = 1/2(2-D). 

An interesting degenerate example of a “branching” crack is given by the Kantor crack shown in Fig. 4. The 
crack can be regarded as an ensemble of microcracks of size A -l/3”, distributed according to the law of a 
Kantor set. In this case the singularity at the tip of the “crack” can be calculated directly. 

I 1’1 I 
n=J 

-A ----A n 

FIG. 4. 



Fractal cracks 571 

Indeed, the quantity G calculated at the macrolevel in the scale 1 has the form 

G ,If--la 

On the other hand, 

C-XC, 
i 

(3.2) 

(3.3) 

where Gi is the energy released during the motion of the ith microcrack of scale A. Relation (3.3) follows from 
the fact that the energy is not released (nor dissipated) outside the crack surfaces since the body in question is 
assumed to be elastic. 

Using the elastic field at the crack tip to compute Gi we find Gi- A. Further, taking into account the fact that 
A - %“, we obtain G - Hi A - 2”A - (2/s)“. Putting I- 3” we obtain 

Equating relations (4.2) and (4.4) we see that u = $5. (2 - 0) as expected. 

Note. In describing the process of fractal fracture in the propagation of a fractal crack, we can use an 
approach based on the method of invariant r-integrals or r-residues [ll-141. It should however be 
remembered that the r-integral usually obtained from (1.2) ceases to be invariant in the fractal case, This is due 
to the presence of elastic field singula~ties on all scales under discussion. Taking into account the hierarchical 
structure of the stress field singularities in the case of fractal cracks, we can write a renormed group equation of 
the type (3.1) for determining and calculating the invariant r-integrals, just as was done for the density of 
released energy G. In fact, the proposed approach represents one of the methods of “restoring” the invariance 
of the r-integral in the fractal case. The results obtained using this approach are indistinguishable from those 
given above. 
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